
EMEA TRADING CONFERENCE 2025

#FIXEMEA



Orchestra in Action 
Building applications with 
machine-readable specifications

#FIXEMEA



Orchestra in Action–Building applications 
with machine-readable specifications

Patrick Lucas
Founder

Atomic Wire

Hanno Klein
 FIX Technical Director & Global 
Technical Committee Co-Chair

 FIX Trading Community
Founder & Senior Standards Advisor

FIXdom

Martin Swanson
Founder

Atomic Wire



Introduction to Atomic Wire

- A FinTech based in London and Berlin, we joined the FIX 
Trading Community in 2023 and are actively involved in the 
Orchestra subcommittee, contributing to FIX open-source 
projects.

- We developed community tools for Orchestra because they 
proved valuable for working with the modern data stack:

- Orchestra Build Tools (with examples on GitHub)
- Orchestra Hub (Alpha)
- Orchimate (1.0)

https://github.com/atomicwire/orchestra-examples
https://orchestrahub.org
https://orchimate.org


Simple streaming query

“How many agency orders were 
executed in the past 1 hour?”



Answering even a simple question like this 
involves a lot of heavy lifting

- Diverse encodings
- User customization
- Ambiguity
- Versioning & compatibility
- Interoperability
- Ecosystem



- Encoding abstraction
- Semantic inheritance (custom specifications)
- Message variants (scenarios)
- Append-only versioning (pedigree)
- Multi-protocol capability

Orchestra offers features that let us address 
these challenges

Orchestra is more than just an interface definition language—it provides a framework for 
building encoding-agnostic applications and evolving data in a controlled manner.

https://www.iso20022.org/catalogue-messages/additional-content-messages/variants


Physical Layer

Logical Layer

Encoding abstraction separates the underlying 
data encoding formats from the application logic

- Data dictionary elements 
are defined independently 
from over-the-wire formats.

- Each element has a logical 
name and id mapped to 
physical encodings. name: OrdStatus

id: 39

name: Filled
id: 39002

Field

Value

key: 39
value: ‘2’

TagValue

value: 0x32

SBE

key: ordStatus
value: “Filled”

JSON

Applications

Now we can build generic applications 
that support any encoding



Semantic inheritance allows the creation of custom 
specifications while maintaining consistency

- All data dictionary elements are uniquely identifiable.
- Reference specifications, such as FIX, offer a global data 

dictionary for a specific namespace.
- Users can create custom specifications that inherit 

elements from reference specifications.
- This provides a formal mechanism for ensuring 

semantic equivalence across specifications, reducing 
duplication, and maintaining consistency.



Message variants remove ambiguity and allow 
us to tailor specifications for specific use cases

- FIX messages can serve multiple purposes 
- e.g. ExecutionReport has at least seven uses

- A variant is a restricted version of a global message 
definition, tailored for specific use cases. 

- Implemented in Orchestra as scenarios, which are 
applicable to any type of data dictionary element

- e.g. Instrument component per asset class
- Eliminates ambiguity and can reduce complexity in the 

application layer.

https://orchimate.org/-/fix-latest/ep295/messages/ExecutionReport
https://orchimate.org/-/fix-latest/ep295/components/Instrument


Append-only versioning lets us track, evolve, 
and maintain data compatibility

- Maintain version history in a single specification
- Add, update, or deprecate data elements without 

deleting or reassigning unique name or id.
- Enables data compatibility checking
- Simplifies upgrades and lets you evolve data in a 

controlled manner



Multi-protocol capability provides a consistent 
approach and enhances interoperability

- Orchestra is not restricted to FIX; it offers a flexible 
approach for any data protocol, for instance:

- Standard FIX and FIX customizations
- Native market data feeds (binary)
- FINRA CAT reporting (JSON)

- ISO 20022 base specification is in development
- Internal proprietary formats can also be supported
- Provides a generalizable approach for any data 

dictionary-based protocol



An ecosystem of community tools to build, 
discover and explore Orchestra specifications

- Orchestra Build Tools
- Integrate Orchestra into your CI/CD workflows
- Uses FIX open source CLIs where possible
- Generate build artefacts (docs, encoding schemas, code)
- Lots of executable examples available on GitHub

- Orchestra Hub
- Central repository for discovering specs
- Access specs programmatically (simplify upgrades)
- Supports versioning

- Orchimate
- Search and explore Orchestra specs
- Dynamically load your own specs

https://github.com/atomicwire/orchestra-examples
https://orchestrahub.org
https://orchimate.org


Example #1: FIX SQL
Real-time and historical SQL queries over FIX data streams

Compile-time

Run-time

Data Pipeline

<<Accessor>>
FIX 4.4

<<Transformer>>
Tabularize

<<Application>>
Lifecycles

Stream to 
Kafka

Send normalized 
events to Materialize

Streaming SQL 
queries (ad-hoc 
and continuous)

Orchestra 
Hub

Orchestra Specs:
- FIX 4.2
- FIX 4.4
- FIX Latest

Schema 
Generation

Avro

Schema 
Generation

DDL

Sources

FIX Log
Files

FIX 
Sessions

https://orchestrahub.org/r/atomicwire/fix-4.2-enriched
https://orchestrahub.org/r/atomicwire/fix-4.4-enriched
https://orchestrahub.org/r/atomicwire/fix-latest-enriched
https://github.com/atomicwire/orchestra-examples/tree/main/basic-examples/05-avro-schema


Compile-time

Example #2: Order Book Updates
Real-time order book state computation with LSEG market data

Run-time

Data Pipeline

<<Accessor>>
LSEG GTP

<<Transformer>>
Convert to FIX

<<Application>>
Order Book

Index into 
Elastic

Send order book 
updates to Kafka

Stream results 
to AG Grid for 
visualization

Orchestra 
Hub

Orchestra Specs:
- LSEG Group Ticker Plant
- LSEG Delayed Market Data
- FIX Latest

Schema 
Generation

JSON

Schema 
Generation

Avro

https://orchestrahub.org/r/atomicwire/lseg-gtp
https://orchestrahub.org/r/atomicwire/lseg-dmd
https://orchestrahub.org/r/atomicwire/fix-latest-enriched
https://github.com/atomicwire/orchestra-examples/tree/main/basic-examples/06-json-schema
https://github.com/atomicwire/orchestra-examples/tree/main/basic-examples/05-avro-schema


Q&A

atomicwire.io/contact


