
FIX TRADING COMMUNITY
Nordic Trading Conference 2024
– How to use Orchestra Server? –

Thursday 16th May 2024

Hanno Klein
FIX Technical Director
GTC EMEA Co-Chair
Senior Standards Advisor, FIXdom

Agenda

▪ Orchestra Technical Standard
▪ Objectives

▪ Orchestra in a nutshell

▪ Rules of Engagement with Orchestra
▪ Application Level

▪ Orchestra Scenarios

How to use Orchestra Server?
Orchestra Technical Standard

FIX Standards

Objectives for Orchestra

▪ Machine-readable standard for meta-data describing the content
and behavior of an electronic messaging interface.

▪ Protocol agnostic to be applicable to FIX and non-FIX interfaces.

▪ FIX Protocol (across all versions and flavors, including user-defined elements)

▪ Regulatory protocols (e.g. US: SEC-CAT, Europe: ESMA/FCA, Asia: SFC-DS-OL)

▪ Industry standard protocols (e.g. ISO 20022, FpML)

▪ Proprietary protocols (trading venues, clearinghouses, buy/sell-side, vendors)

▪ Encoding agnostic to separate the business semantics from the wire
format (standard/proprietary, ASCII/binary, with/without meta-data).

▪ Metadata for technical connectivity (counterparties, connections,
sessions, versions, encodings, security,...)

Orchestra in a nutshell (application level)

▪ Basic features

▪ Messages, groups, components, fields, code sets, codes, generic datatypes.

▪ Nesting of groups/components inside messages, groups, components.

▪ Simple presence rules (mandatory, optional, forbidden) for elements.

▪ Unique identification and versioning (a.k.a. pedigree) of all elements.

▪ Advanced features

▪ Conditional rules defined with expressions (e.g. Score DSL).

▪ Scenarios for most elements to distinguish use cases.

▪ Workflows to support request/response models or complex negotiations.

▪ Actors and state machines to define transitions.

Orchestra in a nutshell (connection level)
▪ Basic features

▪ An interface is a collection of services, protocols, sessions, and the transport exposed by a
counterparty.

▪ A service is an offering of an application (e.g. order entry) and requires the identification of
an Orchestra XML file describing the messages etc.

▪ A protocol relates to a specific layer of the technical stack of the interface, e.g. to the
encoding or to the session protocol supported by the interface.

▪ A session describes the connection with a counterparty (e.g. IP addresses).

▪ A transport describes the lowest layer of the interface (e.g. TCP, UDP multicast).

▪ Advanced features

▪ FIXatdl® can be supported as the protocol used for the user interface and requires the
identification of an FIXatdl® XML file describing the GUI.

▪ A session may have an effective time (start/end time) to support configuration prior to use.

▪ A session definition may contain security keys (e.g. certificates, private keys) to be used when
exchanging messages.

How to use Orchestra Server?
Rules of Engagement

Rules of Engagement (application level)

▪ Task

▪ Design a FIX Latest compliant interface with an order entry message and a response
confirming a) the successful addition to the order book and b) the partial or full execution
of the order.

▪ The order needs to support ticker symbols and ISINs for the security.

▪ Order attributes are type (market or limit), side, price, quantity, target venue and an
optional custom field “MyUDF” for additional information.

▪ Approach

▪ Use spreadsheet to design messages “top-down”.

▪ Use Playlist to design messages “bottom-up”.

1. Define code sets (SecurityIDSource(22), OrdType(40), Side(54), ExecType(150), OrdStatus(39),
MsgType(34), BeginString(8))

2. Define components (Instrument, OrdQtyData, ExecType, OrdStatus)

3. Define messages (NewOrderSingle(35=D), ExecutionReport(35=8))

▪ Use Orchestra Server to add custom field “MyUDF” and create specification document

▪ Export Rules of Engagement as Orchestra XML file and PDF document

Step 1: Define messages in spreadsheet

Message Component Field Value(s)

NewOrderSingle(35=D) BeginString(8) FIXT.1.1
ClOrdID(11)

Instrument Symbol(55)

Instrument SecurityID(48)
Instrument SecurityIDSource(22) 4=ISIN

OrdType(40) 1=Market
2=Limit

Price(44)
OrderQtyData OrderQty(38)

Side(54) 1=Buy
2=Sell

ExDestination(100)
MyUDF(20000)

Message Component Field Value(s)
ExecutionReport(35=8) BeginString(8) FIXT.1.1

ClOrdID(11)

OrderID(37)
Instrument Symbol(55)
Instrument SecurityID(48)

Instrument SecurityIDSource(22) 4=ISIN

OrdType(40) 1=Market
2=Limit

Price(44)

OrderQtyData OrderQty(38)
Side(54) 1=Buy

2=Sell

ExDestination(100)
ExecType(150) 0=New

F=Trade
OrdStatus(39) 0=New

1=Partially Filled
2=Filled

LeavesQty(151)
CumQty(14)

LastQty(32)
LastPx(31)

MyUDF(20000)

Step 2: Define code sets in Playlist

...

...

Step 3: Define components in Playlist
...

...

Step 4: Define messages in Playlist

...

...

...

...

...

...

...

...

...

...

...

...

...

Step 5: Upload to Orchestra Server (1)

Step 5: Upload to Orchestra Server (2)

Step 5: Upload to Orchestra Server (3)

Step 6: Add UDF with Orchestra Server

1 2

3 4

Step 7: Create specification document

Step 7: Create specification document

Step 8: Export Rules of Engagement (XML)

1 2

3

Step 8: Export Rules of Engagement (PDF)

How to use Orchestra Server?
Orchestra Scenarios

Orchestra Scenarios
▪ Orchestra supports scenarios for the main elements of the schema:

▪ Messages, Groups, Components, Fields, Code Sets, Datatypes (as of v1.1).

▪ A scenario is a copy of another element with different characteristics

▪ Message/group/component scenarios can have different subsets of fields and
different presence attributes.

▪ Field scenarios can have different code sets.

▪ Datatype scenarios can have different value ranges.

▪ Scenarios are the machine-readable equivalent to manual text, e.g.

▪ Execution report fields and repeating groups that only apply to trades.

▪ Instrument fields and values that only apply to specific asset classes.

Orchestra Scenarios
▪ Scenarios support the definition of granular workflows

▪ ExecutionReport(35=8) messages to confirm a new order do not need fields
like LastQty(32) and LastPx(31) or ExecType(150) values F=Trade, G=Trade
Correct, H=Trade Cancel.

▪ Conditional requirements may be a better choice for single fields

▪ Example: Stop price only relevant when order type identifies a stop order

▪ Using scenarios requires a message level scenario only for stop orders

▪ Better: StopPx(99) conditionally required when OrdType(40)=3 or 4

▪ Datatype scenarios (Orchestra v1.1):

▪ Orchestra v1.0 only supports a base type, e.g. “int”, for derived datatypes, e.g.
“SeqNum” which has to be positive

▪ Orchestra v1.1 allows to define scenarios for datatypes, e.g. for “int”

▪ scenario=“base” for all integer values
▪ Scenario=“SeqNum” for positive integer values

